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Abstract

Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which

are described by using the quasi-steady hypothesis. The hysteresis of transverse galloping is also analyzed. Approximate

solutions of the model are obtained by assuming that the aerodynamic and damping forces are much smaller than the

inertial and stiffness ones. The analysis of the approximate solution, which is obtained by means of the method of

Krylov–Bogoliubov, reveals the existing link between the hysteresis phenomenon and the number of inflection points at

the aerodynamic force coefficient curve, CyðaÞ; Cy and a being, respectively, the force coefficient normal to the incident

flow and the angle of attack. The influence of the position of these inflection points on the range of flow velocities in

which hysteresis takes place is also analyzed.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Transverse galloping is synonymous with the well-known stall flutter phenomenon in aeronautics; it is a well-known

one-degree-of-freedom aeroelastic instability firstly described by Lanchaster (1907). These low frequency self-excited

oscillations develop only in structures whose cross-sections are non-circular (Rockwell and Naudascher, 1994). The

frequency of the oscillations is approximately the same as the natural frequency of the structure (when the density of the

structure is much higher than the air density). The classic example of transverse galloping is the oscillation of the wires

of the electric transmission lines that is sometimes observed when ice accretion on the wires modifies their initially

almost circular sections. The phenomenon has also been observed in cantilevered traffic signs and signal supports

(Johns and Dexter, 1998) or in marine pipelines where the deposition of organic material on the surface of the pipes

gives rise to sections with more or less elliptical shapes (Simpson, 1972).

Den Hartog (1956) was the first one in establishing the conditions for the onset of transverse galloping using the

quasi-steady hypothesis to describe the linearized aerodynamic forces. Generally, this assumption is justified, since

galloping occurs at high flow velocities, so that the characteristic timescale of the flow, tr ¼ L=U , is small compared to

the characteristic timescale of the changes in the boundary conditions, which is of the order tcc ¼ 1=o0 (o0 is the natural
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frequency of vibration of the structure and L and U are the characteristic length and velocity of the flow), therefore

tr=tcc ¼ o0L=U51. In this case, the aerodynamic force acting on the oscillating structure is approximately equal to the

static aerodynamic force evaluated at the instantaneous angle of attack of the incident flow.

However, the linearized model is not appropriate for describing the time evolution of the structure once galloping is

started. To perform this analysis, post-critical, nonlinear terms must be retained. These nonlinear terms limit the

amplitude of the oscillations and drive the system towards a limit cycle of oscillations (LCO). Once the LCO has been

reached, the energy input to the structure by the flow equals the energy dissipated by structural damping averaged along

a cycle. Parkinson (1961, 1964) developed a one-degree-of-freedom nonlinear model where the nonlinear aerodynamic

forces were described by the quasi-steady hypothesis (a similar analysis was done by Sisto (1953) in the study of the

instabilities in a cascade of turbine blades operating at high angles of attack). Parkinson’s analyses not only determined

the amplitude of the limit cycle oscillations as a function of the flow velocity, but they also shed light on the hysteresis

effect observed in some galloping experiments. In those experiments it was found that after the onset of galloping,

multiple solutions for the amplitude of oscillations can appear for a range of flow velocity. In addition, the amplitude of

the LCO was different, depending on whether the reduced velocity was increasing or decreasing.

Later, in a number of papers, Novak (1969, 1972) extended the analysis of transverse galloping to the three-

dimensional case. He considered structures with rectangular cross-sections and analyzed their different galloping

responses. He pointed out that there are four basic types of CyðaÞ curves, Cy and a being, respectively, the force

coefficient normal to the incident flow and the angle of attack, each one associated with its own characteristic response.

Blevins and Iwan (1974) considered the case of a system with two degrees of freedom (vertical and rotational). In this

case, the angle of attack induced by the movement depends on both the velocity and the position of the oscillator;

therefore, the aerodynamic force has not only a damping effect as in the case of transverse galloping (see Section 2), but

there is also an added stiffness effect. Another consequence is that, due to the rotational motion, the application of the

quasi-steady hypothesis is less obvious, because an exact equivalent steady situation cannot be defined. Recently, Van

Oudheusden (2000) studied the rotational galloping of a square cross-section cylinder. One of the conclusions is a slight

disagreement between quasi-steady theory and experiments.

The effects of turbulence on transverse galloping were explored by Novak and Tanaka (1974). They found that

turbulence had a stabilizing effect for structures with sections of given shapes, while it was destabilizing for others (they

used the intensity of turbulence as the only parameter to describe turbulence). Nakamura and Matsukawa (1987)

explored the limits of the quasi-steady hypothesis and Hémon (1999) and Hémon and Santi (2002) gave a correction for

the quasi-steady hypothesis by introducing a time delay between the aerodynamic force and the oscillation.

Despite its intrinsic interest, understanding of galloping hysteresis has not received much attention until Luo et al.

(2003). These investigators showed that the galloping hysteresis is related to the existence of one, or more, inflection

point in the curve of the static aerodynamic coefficient CyðaÞ. The presence of an inflection point is due to the

reattachment of the flow on either the lower or the upper side of the square cylinder (the characteristic shape of the

cross-section of the structure considered in Luo et al. paper) as can be deduced from the visualization experiments

carried out by Luo and co-workers. One of the objectives of the present paper is to demonstrate unequivocally the link

between the emergence of inflection points and the hysteresis phenomenon. Throughout this paper we will demonstrate

that the hysteresis phenomenon and the number of LCOs associated with this phenomenon are determined by the

number of points of inflection of the curve CyðaÞ. Indeed, the influence of the position of the points of inflection on the

range of fluid velocity where hysteresis takes place is analyzed.

This paper is organized as follows: the mathematical model that describes approximately the phenomenon

of transverse galloping is presented in Section 2. Section 3 briefly describes the asymptotic method used to obtain

analytical solutions of the mathematical model. The link between the appearance of hysteresis in transverse galloping

and the existence of inflection points in the CyðaÞ curve is unambiguously shown in Section 4; indeed, we show the

influence of the position of the inflection points over the range of flow velocity in which hysteresis takes place. Finally,

results are discussed and summarized in Section 5.
2. Mathematical model

The description of the behaviour of a structure under the action of an incident flow is an extremely complex problem;

therefore, its modelling must be conveniently simplified for making the analysis more affordable. The assumptions that

(i) the structure is described as a linear oscillator of one degree of freedom, (ii) the structure is sufficiently slender to

consider two-dimensional flow, and (iii) that the incident flow is free of turbulence are rather common simplifications in

the fluid–structure interaction analysis. Under these conditions, the equation governing the dynamics of the transverse
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Fig. 1. Schematic representation of the aerodynamic forces and the induced angle of attack by means of the quasi-steady hypothesis.
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galloping is (see sketch in Fig. 1)

mð €yþ 2zyoy _yþ o2
yyÞ ¼ Fy ¼

1
2
rU2DCy, (1)

where y denotes the vertical position, m is the mass of the structure per unit length, zy is the dimensionless structural

damping coefficient, oy is the undamped natural frequency, r is the fluid density, which will be considered constant

throughout the analysis, U is the velocity of the incident flow, D is the characteristic dimension of the structure in the

direction of the flow, Cy is the dimensionless coefficient of the aerodynamic force in the normal direction to the incident

flow; finally, the dot symbol stands for differentiation with respect to time t.

As advanced in the Introduction, the aerodynamic force will be evaluated by resorting to the quasi-steady

assumption, whose use is justified because
(i)
 the characteristic timescale of the structure oscillations is much larger than the characteristic timescale of the flow,
(ii)
 the vortex shedding frequency is much higher than the oscillation frequency of the structure.
Thus, the aerodynamic force is completely determined by the instantaneous position of the structure; inertial and

memory effects are considered to be of lower order, so that aerodynamic force data in the static case can be used, and

they can easily be related to the motion of the structure.

In the static case, the force coefficient perpendicular to the incident flow can be expanded in powers of the angle of

attack, a, in the range of interest, ½�a�; a��, a� being moderately small,

CyðaÞ ¼
Xn

j¼0

ajaj , (2)

where a is the angle between the incident flow and the reference direction (in the static equilibrium position of the

structure, see Fig. 1).
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Assuming small values of the velocity ratio _y=U and expanding a in Taylor series, a ¼ arctanð _y=UÞ ’ _y=U , one

obtains

CyðaÞ ¼
Xn

j¼0

aj

_y

U

� �j

. (3)

Then, Eq. (1) can be rewritten as

mð €yþ 2zyoy _yþ o2
yyÞ ¼

1

2
rU2D

Xn

j¼0

aj

_y

U

� �j

. (4)

Introducing dimensionless variables Z ¼ y=D and t ¼ oyt and the reduced velocity Ur ¼ U=oyD, Eq. (4) becomes

Z00 þ 2zyZ
0 þ Z ¼ mU2

r

Xn

j¼0

aj
Z0

Ur

� �j

, (5)

where the prime represents differentiation with respect to the dimensionless time t and m ¼ rD2=2m is the dimensionless

mass ratio.

For j � 2, Eq. (5) is an autonomous nonlinear ordinary differential equation. Obviously, if we retain only the first

term of the expansion, Den Hartog’s result is recovered and the critical reduced velocity of galloping is given by

Urg ¼ 2zy=ma1; clearly, results are physically relevant only for a140. Once the function CyðaÞ is known, Eq. (5) can be

solved either numerically or by asymptotic methods if the nonlinear term is small. In the case that both aerodynamic

and damping forces, of order of mUr and zy, respectively, are small compared with inertia and stiffness forces (of order

of unity in the dimensionless equation), solutions of Eq. (5) will tend to a limit cycle of quasi-harmonic oscillations.

This behaviour of the structure is quite usual if its mean density is much higher than that of the fluid (for air, m is

typically of order 10�3 and mUr�10
�2) and the value of the structural damping coefficient rarely exceeds 1%.

Another consequence is that only the antisymmetric part of CyðaÞ plays a relevant role in the dynamics. Actually, the

aerodynamic work in an oscillation cycle can be expressed asZ T

0

Fy _ydt ¼
1

2
rU2D

Z T

0

Cy _ydt,

where Cy ¼
Pn

j¼0ajð _y=UÞj , and T states for a one full period. Obviously, under harmonic oscillations, only the terms

with odd powers in the polynomial CyðaÞ yield nonzero contributions to the integral. In the following, we consider weak

aerodynamic forces and that in the polynomial expression for CyðaÞ only odd terms are retained.
3. Asymptotic solutions: Krylov–Bogoliubov method

The main advantage of the approximate solutions of nonlinear differential equations in comparison to the numerical

solution is that in the former case it is easier to study the role of the different parameters. Perturbation (or asymptotic)

methods, as, for example, the Krylov–Bogoliubov method (Murdock, 1991), are particularly useful to obtain approxi-

mate solutions for weakly nonlinear oscillators. Let us present a brief summary. Consider the nonlinear harmonic

oscillator

€xþ x ¼ ef ðx; _xÞ; e51, (6)

whose solution for the case e ¼ 0 is xðtÞ ¼ X cosðtþ fÞ (note that in this case overdot denotes differentiation

with respect to the dimensionless time t). For small values of e, solutions of Eq. (6) can be written as

xðtÞ ¼ X ðtÞ cos½tþ fðtÞ�, where X ðtÞ and fðtÞ are the functions slowly varying with t (the effect of the forcing term

is small, giving rise to a slow change of the parameters in the harmonic solution). As the nonlinearity is small, two

different timescales exist in the problem, corresponding to the oscillation and the growth of the amplitude of oscillation

(their derivatives with respect of t being of the order of e). Then, if xðtÞ ¼ X ðtÞ cos½tþ fðtÞ�, its derivative with respect

to t taking into account that _X� _f51 is

_xðtÞ ¼ �X sin½tþ fðtÞ�, (7)

with the additional condition

_X cos½tþ fðtÞ� � X _f sin½tþ fðtÞ� ¼ 0. (8)
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Introducing the derivative of (7) with regard to t into Eq. (6), one finds at the lowest order

_X sin½tþ fðtÞ� � X _f cos½tþ fðtÞ� ¼ ef ½X cosðtþ fÞ;�X sinðtþ fÞ�, (9)

which together with condition (8) yields

_X ¼ �
e
2p

Z 2p

0

f ½X cosðtþ fÞ;�X sinðtþ fÞ� sinðtþ fÞdt,

_f ¼ �
e

2pX

Z 2p

0

f ½X cosðtþ fÞ;�X sinðtþ fÞ� cosðtþ fÞdt.

Applying this method to Eq. (5), we look for solutions in the form

Z ¼ rðtÞ cos½tþ fðtÞ�; Z0 ¼ �rðtÞ sin½tþ fðtÞ� þ Oðr0Þ,

where r and f vary slowly with t. The application of the Krylov–Bogoliubov method leads to

r0 ¼ �
1

2p

Z 2p

0

�2zyZ
0 þ mU2

r

Xn

j¼0

aj

Z0

Ur

� �j
 !

sinðtþ fÞdt. (10)

The evaluation of (10) is straightforward because Z0 ¼ �r sinðtþ fÞ during a cycle of oscillation (0 � t � 2p) (r and f
are constants); therefore, the integrand is composed of terms which are proportional to the powers of sinðtþ fÞ.
Integrating by parts, it is easily shown that a recurrence relation appears and

1

2p

Z 2p

0

ðsinxÞjþ1 dx ¼ kj ¼
j

j þ 1
kj�2; j ¼ 3; 5; 7; 9; . . . ; ðk1 ¼ 1=2Þ

1

2p

Z 2p

0

ðsinxÞjþ1 dx ¼ 0; j ¼ 2; 4; 6; 8; . . . ,

and therefore,

r0 ¼ �zyrþ m
X

j

aj

Uj�2
r

kj

� �
rj , (11)

where j ¼ 1; 3; 5; 7; 9; . . . and k�1 ¼ 1.

It is noteworthy that for large values of j, kj remains small. Since Ur is large compared to unity (quasi-steady

hypothesis), the series in Eq. (11) is convergent unless aj=Uj�2
r b1, which has no physical meaning (see Fig. 2).
Fig. 2. (a) Static curve of Cy with no inflection points. Cy ¼ 8a� 75a3. (b) Universal response to galloping with Cy data obtained by

the Krylov–Bogoliubov method; —, universal response to galloping; – – – –, asymptotic character of the solution when Ur=Urg � 1.
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Now, the advantage of the approximate solution of Eq. (5) is clear, because thanks to the functional relationship

obtained in (11), r0 ¼ F ðr; m; zy;Ur; ajÞ, it is easy to determine the amplitude(s) of the limit cycle(s) as a function of the

flow velocity, mass ratio, structural damping and the coefficients aj of the static force coefficient Cy. Amplitudes of

LCO(s) are given by the real and positive roots of r0 ¼ 0 [Fðr; m; zy;Ur; ajÞ ¼ 0�, and the stability analysis shows that the

LCO is stable if

dF ðr; zy;Ur; ajÞ

dr

����
r¼r�

o0,

r� being the amplitude of the LCO.
4. Influence of the shape of the Cy curve on the hysteresis phenomenon

As we pointed out in the Introduction, the hysteresis region is characterized by the existence of a solution that can

alternately reach different cycles limits. In this case, the characteristic polynomial that provides the amplitude of the

LCO, F ðr; m; zy;Ur; ajÞ ¼ 0, presents more than a real positive solution.

In the following, let us analyze the solutions corresponding to a variety of CyðaÞ curves typical of bluff bodies in order

to clarify the correlation between the number of inflection points and the hysteresis. Indeed, we study the role of the

position of these inflection points over the range of hysteresis. Since the galloping dynamics is unaffected by the even

terms of the polynomial CyðaÞ, we have only considered antisymmetric polynomials.

4.1. CyðaÞ curve with no inflection points

The minimum order of an antisymmetric polynomial which do not exhibit inflection points (ai40) is three, so that Cy

is given by

CyðaÞ ¼ a1aþ a3a3; a40. (12)

Substituting (12) in Eq. (11), one obtains the average equation for the amplitude

r0 ¼ FðrÞ ¼ �zy þ
ma1Ur

2

� �
rþ

3

8
ma3

1

Ur

r3. (13)

We define next appropriate dimensionless variables, as suggested by Novak (1969), r� ¼ ma1r=2zy for the amplitude

of the oscillation and the flow velocity parameter U�r ¼ ma1Ur=2zy ¼ Ur=Urg (here Urg is the critical reduced velocity of

galloping). Note that through this normalization, all response curves collapse to a universal curve irrespective of

differences in mass and structural damping, and one gets

�zy þ
ma1Ur

2

� �
r ¼

ma1

2
ðU�r � 1ÞU2

rgr�;
3

8
ma3

1

Ur

r3 ¼
3

8
ma3

1

U�r
U2

rgr�3; r0 ¼ Urgr�
0

.

Then, Eq. (13) can be written as

r�
0

¼ F ðr�Þ ¼ Urg

ma1

2
ðU�r � 1Þr� þ

3

8
ma3

1

U�r
r�3

� �
, (14)

and

r�00 ¼ dF ðr�Þ=dr� ¼ Urg
ma1

2
ðU�r � 1Þ þ

9

8
ma3

1

U�r
r�2

� �
. (15)

The LCO(s) is (are) given by the real and positive roots of F ðr�Þ ¼ 0 and its (their) stability is governed by the sign of

the gradient r�00 ¼ dF ðr�Þ=dr� evaluated at LCO. Therefore, from Eq. (14) the roots are

ðiÞ r�1 ¼ 0; ðiiÞ r�2 ¼ �
4a1

3a3
ðU�r � 1ÞU�r

� �1=2

.

If a140 (galloping criterion) the solution of r�01 ¼ 0 becomes unstable for U�r � 1 and jumps to a stable LCO with

amplitude given by r�2 if a3o0. The evolution of r� as a function of U�r is shown in Fig. 2. Observe that there is no

hysteresis in a galloping driven by a CyðaÞ curve without inflection points.
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4.1.1. CyðaÞ curve with one inflection point

The minimum order of an antisymmetric polynomial which exhibit one inflection point (ai40) is five, so that Cy is

given by

CyðaÞ ¼ a1aþ a3a3 þ a5a5; a40.

For a3=a5o0, this curve has an inflection point at ai ¼ ð�3a3=10a5Þ
1=2. Proceeding in identical form than in the

previous case, one gets the dimensionless average amplitude

r�
0

¼ F ðr�Þ ¼ Urg

ma1

2
ðU�r � 1Þr� þ

3

8
ma3

1

U�r
r�3 þ

5

16
ma5

1

U�3r

r�5
� �

,

and the gradient

r�00 ¼ dF ðr�Þ=dr� ¼ Urg
ma1

2
ðU�r � 1Þ þ

9

8
ma3

1

U�r
r�2 þ

25

16
ma5

1

U�3r

r�4
� �

.

The LCO(s) are given by the real and positive roots of F ðr�Þ ¼ 0. This means

F ðr�Þ ¼ r�UrgðAþ BY þ CY 2Þ ¼ 0, (16)

where we denoted Y ¼ r�2, A ¼ 1
2
ma1ðU

�
r � 1Þ, B ¼ 3

8
ma3=U�r and C ¼ 5

16
ma5=U�3r . As r�40, the quadratic polynomial

should vanish. Therefore, the amplitude of LCO(s) is given by the roots of (16)

Y ¼ �
B

2C
	
ðB2 � 4ACÞ1=2

2C
,

which are both real if B2 � 4AC40, and positive if �B=2C40 and AC40. Note that
(i)
 �B=2C40 implies that a3=a5o0; as shown before, this condition is satisfied if Cy presents an inflection point;
(ii)
 4AC40 implies that U�ro1 for a1a5o0 (U�r41 for a1a540);
(iii)
 condition B2 � 4AC40 yields the other limit for U�r of the hysteresis region:

(a) 0o�
40a1a5

9a23 � 40a1a5
oU�ro1 ða1a5o0Þ,

(b) 1o�
40a1a5

9a23 � 40a1a5
oU�r ða1a540; 9a23 � 40a1a5o0Þ. (17)
It should be pointed out that the same result is obtained if one determines the point of the saddle–node bifurcation

(considered here as the point where the character of LCO changes from unstable to stable and the gradient r�00 takes a

zero value). In fact, if Eq. (16) provides the amplitudes of LCO(s), then the saddle–node point is given by the condition

Bþ 2CY ¼ 0,

Y SN ¼ r�2SN ¼ �3a3U�2r =5a5 ¼ 2a2i U�2r ,

which is acceptable only if a3=a5o0 (condition of existence of an inflection point). Introducing this result in Eq. (16),

one arrives at the same result than above (Eq. (17)):

U�r jSN ¼ �
40a1a5

9a2
3 � 40a1a5

¼
1

ð3a3=4a1Þa2i þ 1
. (18)

It is interesting to note that this last expression allows to determine the sensitivity with regard to the position of the

point of saddle–node bifurcation, and, therefore, the range of hysteresis as a function of the coefficients of the CyðaÞ
polynomial. In effect, taking the first derivatives of expression (18) with respect to the three coefficients a1, a3 and a5,

@U�r jSN

@a1
¼ �

360a2
3a5

ð9a23 � 40a1a5Þ
2
;

@U�r jSN

@a3
¼

720a1a3a5

ð9a23 � 40a1a5Þ
2
;

@U�r jSN

@a5
¼ �

360a23a1

ð9a23 � 40a1a5Þ
2
,

one arrives at the following conclusions (see Fig. 3(a)):
(i)
 if a5o0, then @U�r jSN=@a140. In this case, the larger is a1 the narrower will be the hysteresis region; note that

U�r jSN increases with a1;
(ii)
 if a5o0, then @U�r jSN=@a3o0; therefore, the hysteresis region is wider since U�r jSN decreases as a3 increases;
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Fig. 3. Range of hysteresis when Cy exhibits one inflection point: (a) dependence with regard to the coefficients and (b) with respect to

the position of the inflection point.
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(iii)
 @U�r jSN=@a5o0; therefore if a5 increases the interval of the hysteresis region increases too, since U�r jSN decreases

when a5 increases.
From Eq. (18) a new interesting aspect appears: the position of the point of inflection has influence in the size of the

hysteresis region. Taking the first derivatives of expression (18) with respect to ai,

@U�r jSN

@ai

¼ �
ð3a3=2a1Þai

ð3a3=4a1Þa2i þ 1
� �2 ,

one arrives at the following conclusion (see Fig. 3(b)): if a3=a140 then @U�r jSN=@aio0, i.e. the further the inflection

point is from the origin the wider the hysteresis region is; however, when a3=a1o0 then @U�r jSN=@ai40.

Fig. 4 shows the results of a parametric study on the size of hysteresis region where some coefficients of CyðaÞ are
properly varied. From the study shown in the figure we can deduce some conclusions summarized in Table 1. Table 2

shows the value of coefficients of CyðaÞ used for the study and the position of the inflection point, ai. The results indicate

the expected dependence. Fig. 5 shows the universal response of the system to a CyðaÞ curve with one inflection point.

Observe that there is a hysteresis region for the interval U�r jSNoU�ro1 and just one LCO for U�r � 1.

4.2. CyðaÞ curve with two inflection points

The minimum order of an antisymmetric polynomial which exhibits two inflection points (ai1; ai240) is seven, so that

Cy is given by

CyðaÞ ¼ a1aþ a3a3 þ a5a5 þ a7a7; a40.

This curve has two inflection points given by

ai1;i2 ¼ �
20a5

84a7
	

1

84a7
ð400a2

5 � 1008a3a7Þ
1=2

� �1=2

,

which are real and positive if both a3=a740 and a5=a7o0. Dimensionless average amplitude may be obtained by

proceeding in identical form than in the previous case; then, we arrive at

r�
0

¼ F ðr�Þ ¼ Urg
ma1

2
ðU�r � 1Þr� þ

3

8
ma3

1

U�r
r�3 þ

5

16
ma5

1

U�3r

r�5 þ
35

128
ma7

1

U�5r

r�7
� �

,

and the gradient

r�00 ¼ dF ðr�Þ=dr� ¼ Urg
ma1

2
ðU�r � 1Þ þ

9

8
ma3

1

U�r
r�2 þ

25

16
ma5

1

U�3r

r�4 þ
245

128
ma7

1

U�5r

r�6
� �

.

The real and positive roots of F ðr�Þ ¼ 0 yield the amplitude of LCO(s); so that

r�Urg Aþ BY þ CY 2 þDY 3
� �

¼ 0. (19)

The analysis of (19) shows the existence of three different solutions separated by two saddle–node bifurcation points
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Fig. 4. Influence of the (a) a1, (b) a3, and (c) a5 coefficients in the hysteresis range. The values of a1; a3 and a5 are given in Table 2.
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Table 1

Influence in the range of hysteresis of the coefficients of CyðaÞ.

4U�rh=4 ja1j 4U�rh=4 ja3j 4U�rh=4 ja5j

o0 40 o0

U�rh is the range of flow velocity where hysteresis takes place.

Table 2

Coefficients of the static curve Cy ¼ a1aþ a3a3 þ a5a5 used to get the universal response shown in Fig. 4.

id (a) (b) (c)

a1 a3 a5 ai a1 a3 a5 ai a1 a3 a5 ai


 1:5 ¼ x 231 �3800 0.13 1.5 231 ¼ y �3800 0.13 1.5 231 �3800 ¼ z 0.13

� 1.2x 231 �3800 0.13 1.5 1.2y �3800 0.15 1.5 231 1.2z 0.12

þ 0.8x 231 �3800 0.13 1.5 0.8y �3800 0.12 1.5 231 0.8z 0.15

hhidii is used to identify the corresponding responses shown in Fig. 6.

Fig. 5. (a) Static curve of Cy with one inflection point. Cy ¼ 1:5aþ 238a3 � 3800a5. (b) Universal response to galloping with Cy data

obtained by the Krylov–Bogoliubov method. U: unstable, S: stable, SN: saddle–node.
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given by

Y SN1;SN2 ¼ �
4

105

10a5 	 ð100a2
5 � 315a3a7Þ

1=2

a7

 !
U�2r . (20)

These solutions, which are real and positive if both a3=a740 and a5=a7o0, show again the link between the number of

inflection points in CyðaÞ and the number of LCO(s) in the hysteresis region. The response of the system to a CyðaÞ curve
with two inflection points is given in Fig. 6. Observe that the appearance of two inflection points brings a hysteresis

phenomenon with three LCOs. Let us now discuss the extent of the flow velocity range in which the hysteresis

phenomenon appears. In this case the algebra is more complicated and we have carried out a numerical parametric

study where some coefficients of CyðaÞ have been properly varied. Fig. 7 shows the results of the study; we can deduce

some conclusions summarized in Table 3. Table 4 shows the value of coefficients of CyðaÞ used for the study and Table 5



ARTICLE IN PRESS

Fig. 6. (a) Static curve of Cy with two inflection points. Cy ¼ 4:72a� 294a3 þ 10 972a5 � 105000a7. (b) Universal response to

galloping with Cy data obtained by the Krylov–Bogoliubov method. U: unstable, S: stable, SN: saddle–node.

Fig. 7. Influence of the (a) a1, (b) a3, (c) a5, and (d) a7 coefficients in the hysteresis range. In all cases, values for a1; a3; a5 and a7 are

givne in Table 4.
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Table 3

Influence in the range of hysteresis of the coefficients of CyðaÞ.

4U�rh=4 ja1j 4U�rh=4 ja3j 4U�rh=4 ja5j 4U�rh=4 ja7j

o0 o0 40 o0

U�rh is the range of flow velocity where hysteresis takes place.

Table 4

Coefficients of the static curve Cy ¼ a1aþ a3a3 þ a5a5 þ a7a7 used to get the universal response shown in Fig. 7.

id (a) (b)

a1 a3 a5 a7 a1 a3 a5 a7


 2:7 ¼ x �168 6270 �60 000 2.7 �168 ¼ y 6270 �60 000

� 1.2x �168 6270 �60 000 2.7 1.2y 6270 �60 000

þ 0.8x �168 6270 �60 000 2.7 0.8y 6270 �60 000

id (c) (d)

a1 a3 a5 a7 a1 a3 a5 a7


 2.7 �168 6270 ¼ z �60 000 2.7 �168 6270 �60 000 ¼ w

� 2.7 �168 1.2z �60 000 2.7 �168 6270 1.2w

þ 2.7 �168 0.8z �60 000 2.7 �168 6270 0.8w

hhidii is used to identify the corresponding responses shown in Fig. 7. a1 ¼ 2:7, a3 ¼ �168, a5 ¼ 6270, and a7 ¼ �60000 correspond to

those coefficients obtained experimentally by Novak for a square section (Blevins, 1990, p. 115).

Table 5

Position of the inflection points, ai1 ai2, of Cy curves used to get the universal responses shown in Fig. 7. Cases (a), (b) and (c) in the

Table correspond to the response shown in Fig. 7(b), (c) and (d), respectively.

id (a) (b) (c)

ai1 ai2 ai2 � ai1 RH ai1 ai2 ai2 � ai1 RH ai1 ai2 ai2 � ai1 RH


 0.10 0.19 0.09 R 0.10 0.19 0.09 R 0.10 0.19 0.09 R

� 0.12 0.19 0.07 m 0.08 0.23 0.15 M 0.10 0.17 0.07 m

þ 0.08 0.20 0.12 M 0.11 0.18 0.07 m 0.09 0.22 0.13 M

RH� Range of hysteresis; R� reference value; M� major; m� minor.
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the location of points of inflection. The results presented in Table 5 show that a relationship between the separation of

points of inflection and the size of the region of hysteresis can exist.

The shape of the CyðaÞ curve depends on the geometry of the body and the initial orientation of that body with

respect to the incident flow (i.e. the initial angle of attack before oscillations occur). For some interesting geometries

from the point of view of their potential application to actual engineering problems, the variation of ClðaÞ and Cd ðaÞ for
the whole range 0�oao360� has been obtained experimentally: biconvex and rhomboidal sections in Alonso et al.

(2008). Those coefficients were used to determine galloping stability regions according to the Den Hartog criterion. But

also from those aerodynamic coefficients it is easy to determine the CyðaÞ curve from an initial angle of attack. Plotting

the antisymmetric part of that curve, and looking at the number and position of the inflection points, the analysis

presented in this paper can be applied to determine regions of hysteresis in the galloping phenomenon for the respective

bodies and initial angles of attack. See Fig. 8 for an example of a CyðaÞ curve obtained experimentally. Finally, Table 6
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Fig. 8. CyðaÞ obtained experimentally by Alonso et al. (2008) for a biconvex cross-section.

Table 6

Summary of the number of LCO as a function of the sign of the coefficients of CyðaÞ.

a1 a3 a5 a7 a9 N sgða1Þ ¼ sgða3Þ Np NLCO Type of excitation

+ � 1 No 0 1 Soft

+ + � 1 Yes 1 2 Hard

� + � 2 No 1 2 Hard

+ � + � 3 No 2 3 Soft

� + � + � 4 No 3 4 Hard

N is the number of sign changes in the list of coefficients. Np is the number of inflection points. NLCO is the number of LCO in the

response. Observe that NLCO ¼ Np þ 1. Note that we present here only cases with physical meaning.
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presents a summary of the different cases that can appear as a function of the different signs in the list of coefficients

of CyðaÞ.
5. Conclusions

Transverse galloping has been analyzed as a nonlinear oscillator of one degree of freedom. Nonlinear aerodynamic

forces limit the amplitude of the transverse galloping oscillations and sometimes lead the oscillator towards a limit

cycle, which is calculated by using the quasi-steady assumption. When the aerodynamic forces are relatively weak, it is

possible to approximately solve the equation of motion by means of asymptotic techniques that allow for a quick and

easy way to determine the amplitude of LCO(s) as a function of the static aerodynamic characteristics, structural

properties and flow velocity. The amplitude of LCO(s) are the fixed points of the fist order nonlinear averaged equation

obtained with the method of Krylov–Bogoliubov. Two cases, with one and two inflection points, have been solved

analytically. The cases of CyðaÞ curves with three or more inflection points have not been considered, not only because

of the complex algebra of the problem but also because it seems rather unlikely that CyðaÞ has three or more inflection

points. The influence of the position of the inflection points on the galloping can be deduced from the analysis. For

example: in the case that CyðaÞ has a unique inflection point, the hysteresis region broadens (the range of velocities for

which hysteresis exists increases) when the distance from the inflection point to the origin increases; if CyðaÞ presents
two inflection points, the interval of flow velocities where hysteresis takes place increases when the separation between

inflection points increases too.
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The analysis also allows to determine the qualitative behaviour of the oscillator response by a simple inspection of the

static aerodynamic data. For example, if one observes the existence of only one inflection point at the CyðaÞ curve, then
one can automatically deduce that the oscillator may present hysteresis via a subcritical bifurcation (Fig. 3). Moreover,

some information about the magnitude of the hysteresis region can be obtained from the location of the inflection point.

It should also be emphasized that the qualitative behaviour of the response to galloping and the number of limit cycles

are independent of the number of terms of the polynomial used to fit the aerodynamic data whenever the former

reproduces all the inflection points of the latter curve.
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